Abstract

The Adapteva Epiphany many-core architecture comprises a scalable 2D mesh Network-on-Chip (NoC) of low-power RíSC cores with minimal uncore functionality. Whereas such a processor offers high computational energy efficiency and parallel scalability, developing effective programming models that address the unique architecture features has presented many challenges. We present here a distributed shared memory (DSM) model supported in software transparently using C++ templated meta-programming techniques. The approach offers an extremely simple parallel programming model well suited for the architecture. Initial results are presented that demonstrate the approach and provide insight into the efficiency of the programming model and also the ability of the NoC to support a DSM without explicit control over data movement and localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.