Abstract

Cognitive radio (CR) is a revolution in radio technology and is viewed as an enabling technology for dynamic spectrum access. This paper investigates how to design distributed algorithm for a future multi-hop CR network, with the objective of maximizing data rates for a set of user communication sessions. We study this problem via a cross-layer optimization approach, with joint consideration of power control, scheduling, and routing. The main contribution of this paper is the development of a distributed optimization algorithm that iteratively increases data rates for user communication sessions. During each iteration, there are two separate processes, a Conservative Iterative Process (CIP) and an Aggressive Iterative Process (AIP). For both CIP and AIP, we describe our design of routing, minimalist scheduling, and power control/scheduling modules. To evaluate the performance of the distributed optimization algorithm, we compare it to an upper bound of the objective function, since the exact optimal solution to the objective function cannot be obtained via its mixed integer nonlinear programming (MINLP) formulation. Since the achievable performance via our distributed algorithm is close to the upper bound and the optimal solution (unknown) lies between the upper bound and the feasible solution obtained by our distributed algorithm, we conclude that the results obtained by our distributed algorithm are very close to the optimal solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.