Abstract

Three key concepts are presented in this paper, which comprise the foundation of a distributed simulation platform for design and virtual prototyping of general mechanical systems that have their subsystems distributed amongst dispersed development units in multilayered supply chains. First, a general and efficient model description for simulation is defined using XML. Each model is described with an XML file and stored in model database. A complete model can then be assembled based on these model descriptions. Simulation of a model is started simply by sending the model description to a simulation server and running it through a web-based graphics user interface. Second, a new gluing algorithm, denoted as the T-T method, is developed, which enables distributed simulations (both the component models and simulation of the components) to be coupled while maintaining the independence of the separate component simulations. Third, a logical distributed simulation architecture is laid out that can be implemented with one of the existing technologies for distributed computing. Interfaces between different network components have been standardized to enable extensibility of the architecture. These concepts have been incorporated into a prototype web-based distributed simulation system that demonstrates the potential of the new techniques for solving real engineering design problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call