Abstract

The Mobile IP can provide continuous Internet access services for the mobile user and does provide a simple and scalable solution to user mobility. Yet, Mobile IP is not a good solution for users with high mobility because it may cause excessive signaling traffic and long latency. The hierarchical mobile IP (HMIP) protocol was proposed to employ the hierarchy of foreign agents (FAs) and the gateway FAs (GFAs) to reduce the number of registration operations and to reduce the signaling latency. However, since user mobility characteristics and network traffic load are always in changing, the centralized and pre-planned network topology of HMIP would become invalid or even lead more signaling cost if no adjustment to be adopted. This paper introduces a novel distributed and dynamic mobility management strategy for Mobile IP where the signaling burden is evenly distributed and the regional network boundary is dynamically adjusted according to the real-time measurement of handover strength or traffic load in the networks. The simulation results show that the strategy can significantly reduce the system signaling latency and enhance the system robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.