Abstract

In wireless networks, efficient management of mobility is a crucial issue to support mobile users. The mobile Internet protocol (MIP) has been proposed to support global mobility in IP networks. Several mobility management strategies have been proposed which aim reducing the signaling traffic related to the Mobile Terminals (MTs) registration with the Home Agents (HAs) whenever their Care-of-Addresses (CoAs) change. They use different foreign agents (FAs) and Gateway FAs (GFAs) hierarchies to concentrate the registration processes. For high-mobility MTs, the Hierarchical MIP (HMIP) and Dynamic HMIP (DHMIP) strategies localize the registration in FAs and GFAs, yielding to high-mobility signaling. The Multicast HMIP strategy limits the registration processes in the GFAs. For high-mobility MTs, it provides lowest mobility signaling delay compared to the HMIP and DHMIP approaches. However, it is resource consuming strategy unless for frequent MT mobility. Hence, we propose an analytic model to evaluate the mean signaling delay and the mean bandwidth per call according to the type of MT mobility. In our analysis, the MHMIP outperforms the DHMIP and MIP strategies in almost all the studied cases. The main contribution of this paper is the analytic model that allows the mobility management approaches performance evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.