Abstract
This article aims to develop an efficient distributed real-time strategy for internal device scheduling and ancillary service coordination in the interconnected system of a medium voltage microgrid and a low voltage distribution network (LVDN). A distributed agent-based dual engine is proposed for coordinated ancillary service optimization, thereby reducing communication and computational burden. The strategy enables the microgrid operator and the LVDN aggregator, which are selfish entities, to perform ancillary service power exchanges by coordinating for both the active/reactive power as well as the compensation rates. The proposed strategy is numerically validated on a 30-node microgrid-LVDN test system consisting of solar PVs, conventional and renewable distributed generators, loads, community battery, and electric vehicles (EVs). This is shown to be beneficial than simply tracking a power profile by the LVDN or considering fixed compensation rates. Microgrid reduces its total operating cost significantly by approximately 31.78%, while maintaining the voltage and state of charges of EVs and community battery within the operation limit. Further, ancillary service coordination for residential and commercial LVDNs with a car park is analyzed, and the study is extended to consider fast charging of EVs with other related constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.