Abstract
In this paper we present a new solution of the star-triangle relation having positive Boltzmann weights. The solution defines an exactly solvable two-dimensional Ising-type (edge interaction) model of statistical mechanics where the local “spin variables” can take arbitrary integer values, i.e., the number of possible spin states at each site of the lattice is infinite. There is also an equivalent “dual” formulation of the model, where the spins take continuous real values on the circle. From algebraic point of view this model is closely related to the 6-vertex model. It is connected with the construction of an intertwiner for two infinite-dimensional representations of the quantum affine algebra Uq(slˆ(2)) without the highest and lowest weights. The partition function of the model in the large lattice limit is calculated by the inversion relation method. Amazingly, it coincides with the partition function of the off-critical 8-vertex free-fermion model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.