Abstract

Visualizing very large matrices involves many formidable problems. Various popular solutions to these problems involve sampling, clustering, projection, or feature selection to reduce the size and complexity of the original task. An important aspect of these methods is how to preserve relative distances between points in the higher-dimensional space after reducing rows and columns to fit in a lower dimensional space. This aspect is important because conclusions based on faulty visual reasoning can be harmful. Judging dissimilar points as similar or similar points as dissimilar on the basis of a visualization can lead to false conclusions. To ameliorate this bias and to make visualizations of very large datasets feasible, we introduce two new algorithms that, respectively, select a subset of rows and columns of a rectangular matrix. This selection is designed to preserve relative distances as closely as possible. We compare our matrix sketch to more traditional alternatives on a variety of artificial and real datasets. Supplementary materials for this article are available online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.