Abstract

Nearest neighbor search (NNS) in high dimensional space is a fundamental and essential operation in applications from many domains, such as machine learning, databases, multimedia and computer vision. In this paper, we first propose a novel and effective distance lower bound computation technique for Euclidean distance by using the combination of linear and non-linear embedding methods. As such, each point in a high dimensional space can be embedded into a low dimensional space such that the distance between two embedded points lower bounds their distance in the original space. Following the filter-and-verify paradigm, we develop an efficient exact NNS algorithm by pruning candidates using the new lower bounding technique and hence reducing the cost of expensive distance computation in high dimensional space. Our comprehensive experiments on 10 real-life and diverse datasets, including image, video, audio and text data, demonstrate that our new algorithm can significantly outperform the state-of-the-art exact NNS techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.