Abstract

The Hubbard model, which is widely used in physics but is mostly unfamiliar to chemists, provides an attractive yet simple model for chemistry beyond the self consistent field molecular orbital approximation. The Hubbard model adds an effective electron-electron repulsion when two electrons occupy the same atomic orbital to the familiar Hückel Hamiltonian. Thus it breaks the degeneracy between excited singlet and triplet states and allows an explicit treatment of electron correlation. We show how to evaluate the parameters of the model from high-level ab initio calculations on two-atom fragments and then to transfer the parameters to large molecules and polymers where accurate ab initio calculations are difficult or impossible. The recently developed MS-RASPT2 method is used to generate accurate potential energy curves for ethene as a function of carbon-carbon bond length, which are used to parameterize the model for conjugated hydrocarbons. Test applications to several conjugated/aromatic molecules show that even though the model is very simple, it is capable of reasonably accurate predictions for bond lengths, and predicts molecular excitation energies in reasonable agreement with those from the MS-RASPT2 method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.