Abstract

The paper presents an iterative algorithm for studying a nonlinear shallow-water wave equation. The equation is written as an evolution equation, involving only first-order spatial derivatives, coupled with the Helmholtz equation. We propose a two-step iterative method that first solves the evolution equation by the implicit midpoint rule and then solves the Helmholtz equation using a three-point sixth-order compact scheme. The first-order derivative terms in the first step are approximated by a sixth-order dispersion-relation-preserving scheme that preserves the physically inherent dispersive nature. The compact Helmholtz solver, on the other hand, allows us to use relatively few nodal points in a stencil, while achieving a higher-order accuracy. The midpoint rule is a symplectic time integrator for Hamiltonian systems, which may be a preferable method to solve the spatially discretized evolution equation. To give an assessment of the dispersion-preserving scheme, we provide a detailed analysis of the dispersive and dissipative errors of this algorithm. Via a variety of examples, we illustrate the efficiency and accuracy of the proposed scheme by examining the errors in different norms and providing the rates of convergence of the method. In addition, we provide several examples to demonstrate that the conserved quantities of the equation are well preserved by the implicit midpoint time integrator. Finally, we compare the accuracy, elapsed computing time, and spatial and temporal rates of convergence among the proposed method, a complete integrable particle method, and the local discontinuous Galerkin method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.