Abstract
Hot compression features of Ti-55511 alloy are investigated by high-temperature compression tests in α+β region. It is found that the flow stress and softening mechanisms are obviously influenced by deformation conditions. The true stress decreases with the reduced strain rate or the raised temperature. The spheroidization of α phase and dynamic recrystallization (DRX) of β phase easily occur at low temperatures such as 973, 1003 and 1033 K, while the dynamic recovery (DRV) of β phase mainly occurs at high temperatures such as 1063 K because of the transformation from α phase to β phase at relatively high temperatures A dislocation density-based constitutive model, which is associated with DRV, work hardening mechanisms and the spheroidization of α phases, is established and validated to describe flow behavior. The correlation coefficient (R) and average absolute relative error (AARE) of the established model are 0.9924 and 6.8%, respectively. 3D power dissipation efficiency maps and processing maps are established to determine the appropriate processing window, i.e., too low temperatures (lower than 973 K) or too high strain rates (higher than 1 s−1) easily induce flow instability. Therefore, the medium temperature (1003–1063 K) and the low strain rate (0.001–0.1 s−1) are applicable for thermal compression of the studied titanium alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.