Abstract
In this work we consider the shortest path problem and the single facility Weber location problem in any real space of finite dimension where there exist different types of polyhedral obstacles or forbidden regions. These regions are polyhedral sets and the metric considered in the space is the Manhattan metric. We present a result that reduce these continuous problems into problems in a “add hoc” graph, where the original problems can be solved using elementary techniques of Graph Theory. We show that, fixed the dimension of the space, both the reduction and the resolution can be done in polynomial time.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.