Abstract

Solving the shortest path problem is important in achieving high performance or to efficiently utilize resources in various kinds of networks, e.g., data communication networks and transportation networks. Fortunately, under independent additive link weights, this problem is solvable in polynomial time. However, in many real-life networks, the link weights (e.g., delay, bandwidth, failure probability) are often correlated due to spatial or temporal dependencies. These correlated link weights together might behave in a different manner and are not always additive. In this paper, we first propose two correlated link-weight models, namely (i) the deterministic correlated model and (ii) the (log-concave) stochastic correlated model. Subsequently, we study the shortest path problem under these two correlated models. We prove that the shortest path problem is NP-hard under the deterministic correlated model, and even cannot be approximated to arbitrary degree in polynomial time. On the other hand, we show that the shortest path problem is polynomial-time solvable under a nodal deterministic correlated model. Finally, we show that the shortest path problem under the (log-concave) stochastic correlated model can be solved by convex optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call