Abstract
This paper studies a discrete-time batch arrival GI/Geo/1 queue where the server may take multiple vacations depending on the state of the queue/system. However, during the vacation period, the server does not remain idle and serves the customers with a rate lower than the usual service rate. The vacation time and the service time during working vacations are geometrically distributed. Keeping note of the specific nature of the arrivals and departures in a discrete-time queue, we study the model under late arrival system with delayed access and early arrival system independently. We formulate the system using supplementary variable technique and apply the theory of difference equation to obtain closed-form expressions of steady-state system content distribution at pre-arrival and arbitrary epochs simultaneously, in terms of roots of the associated characteristic equations. We discuss the stability conditions of the system and develop few performance measures as well. Through some numerical examples, we illustrate the feasibility of our theoretical work and highlight the asymptotic behavior of the probability distributions at pre-arrival epochs. We further discuss the impact of various parameters on the performance of the system. The model considered in this paper covers a wide class of vacation and non-vacation queueing models which have been studied in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.