Abstract

The dynamic and dependant behaviors are typical characteristics of modern complex systems, whose reliability is often improved through the design of multichannel parallel structures. The existence of common cause failures (CCFs) has a significant impact on system reliability. A reliability analysis model is proposed for dynamic systems with CCFs based on discrete-time Bayesian networks (DTBNs). The system operating time is dispersed into several time intervals, and the component failures are divided into independent and CCF states. Dynamic systems with cold and warm spare parts are examined to determine the modelling methodology and conditional probability tables (CPTs) of Bayesian network (BN) nodes. The reliability calculation is realised through the Bayesian inference mechanism. The model is applied to the CCF analysis and fault diagnosis of a digital safety-level distributed control system (DCS) of nuclear power plants (NPPs) to prove the effectiveness and feasibility of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call