Abstract

Soil–tool interactions are at the centre of many agricultural field operations, including slurry injection. Understanding of soil–tool interaction behaviours (soil cutting forces and soil disturbance) is important for designing high performance injection tools. A discrete element model was developed to simulate a slurry injection tool (a sweep) and its interaction with soil using Particle Flow Code in Three Dimensions (PFC3D). In the model, spherical particles with bonds and viscous damping between particles were used to simulate agricultural soil aggregates and their cohesive behaviours. To serve the model development, the sweep was tested in three different soils (coarse sand, loamy sand, and sandy loam). In the tests, soil cutting forces (draught and vertical forces) and soil disturbance characteristics (soil cross-section disturbance and surface deformation) resulting from the sweep were measured. The measured draught and vertical forces were used in calibrations of the most sensitive model parameter, particle stiffness. The calibrated particle stiffness was 0.75×103Nm−1 for the coarse sand, 2.75×103Nm−1 for the loamy sand, and 6×103Nm−1 for the sandy loam. The calibrated model was validated using the soil disturbance characteristics measured in those three soils. The simulations agreed well with the measurements with relative errors below 10% in most cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.