Abstract

AbstractThis work describes a novel formulation for the simulation of incompressible Navier–Stokes problems involving nonconforming discretizations of membrane‐like bodies. The new proposal relies on the use of a modified finite element space within the elements intersected by the embedded geometry, which is represented by a discontinuous (or element‐by‐element) level set function. This is combined with a Nitsche‐based imposition of the general Navier‐slip boundary condition, to be intended as a wall law model. Thanks to the use of an alternative finite element space, the formulation is capable of reproducing exactly discontinuities across the embedded interface, while preserving the structure of the graph of the discrete matrix. The performance, accuracy and convergence of the new proposal is compared with analytical solutions as well as with a body fitted reference technique. Moreover, the proposal is tested against another similar embedded approach. Finally, a realistic application showcasing the possibilities of the method is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.