Abstract
A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite element methods, coupled equations or interpolation functions with a high degree of continuity that have been employed in the literature to treat the fourth-order spatial derivatives. The variational formulation of the discontinuous Galerkin method, its implementation and numerical examples are presented. In this communication, it is also shown under what conditions the method is stable, and an error estimate in an energy-type norm is presented. The method is evaluated by comparison with a standard finite element treatment in which the Cahn–Hilliard equation is decomposed into two coupled partial differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.