Abstract

Cellular automata (CA) model is a powerful instrument used in many applications. In this paper we present a reactive path-planning algorithm for a non-holonomic mobile robot on multilayered cellular automata. The robot considered has a preferential motion direction and has to move using smoothed trajectories, without stopping and turning in place, and with a minimum steering radius. We have implemented a new algorithm based on a directional (anisotropic) propagation of repulsive and attracting potential values in a multilayered cellular automata model. The algorithm finds all the optimal collision-free trajectories following the minimum valley of a potential hypersurface embedded in a 4D space, built respecting the imposed constraints. Our approach turns out to be distributed and incremental: whenever changing the initial or the final pose, or the obstacles distribution, the automata start evolving towards a new global steady state, looking for a new set of solutions. Because it reacts to obstacles distribution changes, it can be also used in unknown or dynamical environments in combination with a world modeler. The path-planning algorithm is applicable on a wide class of vehicles kinematics, selected changing a set of weights.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.