Abstract
An exact direct perturbation theory of nonlinear Schrodinger equation with corrections is developed under the condition that the initial value of the perturbed solution is equal to the value of an exact multisoliton solution at a particular time. After showing the squared Jost functions are the eigenfunctions of the linearized operator with a vanishing eigenvalue, suitable definitions of adjoint functions and inner product are introduced. Orthogonal relations are derived and the expansion of the unity in terms of the squared Jost functions is naturally implied. The completeness of the squared Jost functions is shown by the generalized Marchenko equation. As an example, the evolution of a Raman loss compensated soliton in an optical fiber is treated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have