Abstract
In this study, a new framework for the numerical solutions of inhomogeneous Helmholtz-type equations on three-dimensional (3D) arbitrary domains is presented. A Chebyshev collocation scheme (CCS) is introduced for the efficient and accurate approximation of particular solution for the given 3D boundary value problem. We collocate the numerical scheme at the Gauss–Lobatto nodes to ensure the pseudo-spectral convergence of the Chebyshev interpolation. After the particular solution is evaluated, the introduced CCS is coupled with a two-stage and one-stage numerical schemes to evaluate the final solutions of the given problem. In the two-stage approach, the given inhomogeneous problem is converted to a homogeneous equation and then the boundary-type methods, such as the method of fundamental solutions (MFS), can be used to evaluate the resulting homogeneous solutions. In the one-stage scheme, by imposing the boundary conditions directly to the CCS procedure, the final solutions of the given inhomogeneous problem can be obtained straightforward without the need of using the MFS or other boundary methods to find the homogeneous solution. Two benchmark numerical examples in both smooth and piecewise smooth 3D geometries are presented to demonstrate the applicability and efficiency of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.