Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) in which neuropathic pain is now recognized as a major symptom. To date, few studies have examined the underlying mechanisms of neuropathic pain in MS. Recently we showed that in a chronic-relapsing animal model of MS, experimental autoimmune encephalomyelitis (EAE), characteristic neuropathic behaviours develop. However, responses to persistent noxious stimuli in EAE remain unexplored. We, therefore set out to characterize the changes in pain sensitivity in our EAE model to subcutaneous injection of formalin. We show here that female C57BL/6 mice immunized with myelin oligodendrocyte glycoprotein (MOG 35–55) display a significant decrease in elicited pain behaviours in response to formalin injection. These effects were found to involve dysregulation of the glutamatergic system in EAE. We show here that these effects are mediated by decreased glutamate transporter expression associated with EAE. Our findings demonstrate that dysregulation of glutamate transporter function in EAE mice is an important mechanism underlying the abnormal pain sensitivity in response to persistent noxious stimulation of mice with EAE and also sheds light on a potential mechanism underlying neuropathic pain behaviours in this model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have