Abstract
Surface air temperature (Ta) required for real-time environmental modelling applications should be spatially quantified to capture the nuances of local-scale climates. This study created near real-time air temperature maps at a high spatial resolution across Australia. This mapping is achieved using the thin plate spline interpolation in concert with a digital elevation model and ‘live’ recordings garnered from 534 telemetered Australian Bureau of Meteorology automatic weather station (AWS) sites. The interpolation was assessed using cross-validation analysis in a 1-year period using 30-min interval observation. This was then applied to a fully automated mapping system—based in the R programming language—to produce near real-time maps at sub-hourly intervals. The cross-validation analysis revealed broad similarities across the seasons with mean-absolute error ranging from 1.2 °C (autumn and summer) to 1.3 °C (winter and spring), and corresponding root-mean-square error in the range 1.6 °C to 1.7 °C. The R2 and concordance correlation coefficient (Pc ) values were also above 0.8 in each season indicating predictions were strongly correlated to the validation data. On an hourly basis, errors tended to be highest during the late afternoons in spring and summer from 3 pm to 6 pm, particularly for the coastal areas of Western Australia. The mapping system was trialled over a 21-day period from 1 June 2020 to 21 June 2020 with majority of maps completed within 28-min of AWS site observations being recorded. All outputs were displayed in a web mapping application to exemplify a real-time application of the outputs. This study found that the methods employed would be highly suited for similar applications requiring real-time processing and delivery of climate data at high spatiotemporal resolutions across a considerably large land mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.