Abstract

수문학, 기상학 및 기후학 등에서 필수적인 자료중의 하나인 지상기온 자료는 최근 보건, 생물, 환경 등의 다양한 분야로까지 활용영역이 확대되고 있어 그 중요성이 커지고 있으나 지상관측을 통한 지상기온자료의 취득은 시공간적인 제약이 크기 때문에 실측된 기온자료는 시공간 해상도가 낮아 높은 해상도가 요구되는 연구 분야에서는 활용성에 큰 제약을 갖게 된다. 이를 극복하기 위한 하나의 대안으로 상대적으로 높은 시공간 해상도를 가지고 있는 위성영상자료에서 얻을 수 있는 지표면온도 자료를 이용하여 지상기온을 추정하는 많은 연구들이 수행되어 왔다. 본 연구는 이러한 연구의 일환으로써 기상청에서 제공하고 있는 AWS(Automatic Weather Station)에서 취득된 2010년 지상 온도 자료(AWS data)를 바탕으로 대표적인 지표면 온도자료인 MODIS Land Surface temperature(LST data:MOD11A1)와 지상기온에 영향을 미칠 수 있는 Land Cover Data, DEM(digital elevation model) 등의 보조 자료와 함께 다양한 지구통계 기법들을 이용하여 남한 지역의 지상기온을 추정하였다. 추정 전 2010년 전체(365일) LST자료와 AWS자료와의 차이에 대한 RMSE(Root Mean Square Error)값의 계절별 피복별 분석결과 계절에 따른 RMSE값의 변동계수는 0.86으로 나타났으나 피복에 따른 변동계수는 0.00746으로 나타나 계절별 차이가 피복별 차이보다 큰 것으로 분석 되었다. 계절별 RMSE 값은 겨울철이 가장 낮은 것으로 나타났으며 AWS자료와 LST자료와 보조자료를 이용한 선형 회귀분석결과에서도 겨울철의 결정 계수가 가장 높은 0.818로 나타났으며, 여름철의 경우에는 0.078로 나타나 계절별 차이가 매우 크게 나타났다. 이러한 결과를 바탕으로 지구통계 기법들의 대표적인 방법론인 크리깅 방법 중 일반적으로 많이 사용되고 있는 정규 크리깅, 일반 크리깅, 공동 크리킹, 회귀 크리깅을 이용하여 지상기온을 추정한 후 모델의 정확도를 판단할 수 있는 교차 검증을 실시한 결과 정규 크리깅과 일반 크리깅에 의한 RMSE 값은 1.71, 공동 크리깅과 회귀 크리깅에 의한 RMSE 값은 각각 1.848, 1.63으로 나타나 회귀 크리깅 방법에 의한 추정의 정확도가 가장 높은 것으로 분석되었다. Near surface air temperature data which are one of the essential factors in hydrology, meteorology and climatology, have drawn a substantial amount of attention from various academic domains and societies. Meteorological observations, however, have high spatio-temporal constraints with the limits in the number and distribution over the earth surface. To overcome such limits, many studies have sought to estimate the near surface air temperature from satellite image data at a regional or continental scale with simple regression methods. Alternatively, we applied various Kriging methods such as ordinary Kriging, universal Kriging, Cokriging, Regression Kriging in search of an optimal estimation method based on near surface air temperature data observed from automatic weather stations (AWS) in South Korea throughout 2010 (365 days) and MODIS land surface temperature (LST) data (MOD11A1, 365 images). Due to high spatial heterogeneity, auxiliary data have been also analyzed such as land cover, DEM (digital elevation model) to consider factors that can affect near surface air temperature. Prior to the main estimation, we calculated root mean square error (RMSE) of temperature differences from the 365-days LST and AWS data by season and landcover. The results show that the coefficient of variation (CV) of RMSE by season is 0.86, but the equivalent value of CV by landcover is 0.00746. Seasonal differences between LST and AWS data were greater than that those by landcover. Seasonal RMSE was the lowest in winter (3.72). The results from a linear regression analysis for examining the relationship among AWS, LST, and auxiliary data show that the coefficient of determination was the highest in winter (0.818) but the lowest in summer (0.078), thereby indicating a significant level of seasonal variation. Based on these results, we utilized a variety of Kriging techniques to estimate the surface temperature. The results of cross-validation in each Kriging model show that the measure of model accuracy was 1.71, 1.71, 1.848, and 1.630 for universal Kriging, ordinary Kriging, cokriging, and regression Kriging, respectively. The estimates from regression Kriging thus proved to be the most accurate among the Kriging methods compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.