Abstract
Many significant problems involving crystal property prediction from 3D structures have limited labeled data due to expensive and time-consuming physical simulations or lab experiments. To overcome this challenge, we propose a pretrain-finetune framework for the crystal property prediction task named CrysDiff based on diffusion models. In the pre-training phase, CrysDiff learns the latent marginal distribution of crystal structures via the reconstruction task. Subsequently, CrysDiff can be fine-tuned under the guidance of the new sparse labeled data, fitting the conditional distribution of the target property given the crystal structures. To better model the crystal geometry, CrysDiff notably captures the full symmetric properties of the crystals, including the invariance of reflection, rotation, and periodic translation. Extensive experiments demonstrate that CrysDiff can significantly improve the performance of the downstream crystal property prediction task on multiple target properties, outperforming all the SOTA pre-training models for crystals with good margins on the popular JARVIS-DFT dataset.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have