Abstract

With the increasing computation and storage capabilities of mobile devices, the concept of fog computing was proposed to tackle the high communication delay inherent in cloud computing, and also improve the security to some extent. This paper concerns with the privacy issue inherent in the sustainable fog computing platform. However, there is no universal solution to the privacy problem in fog computing due to the device heterogeneity. In this paper, we proposed a differential privacy-based query model for sustainable fog computing supported data center. We designed a method that can quantify the quality of privacy preserving through rigorous mathematical proof. The proposed method uses the query model to capture the structure information of the sustainable fog computing supported data center, and the datasets for the query result are mapped to real vectors. Then, we implemented the differential privacy preserving by injecting Laplacian noise. The experiment results demonstrated that the proposed method can effectively resist various popular privacy attacks, and achieve relatively high data utility under the premise of better privacy preserving.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.