Abstract

This manuscript is focused on transit smart card data and finds that the release of such trajectory information after simple anonymization creates high concern about breaching privacy. Trajectory data is large-scale, high-dimensional, and sparse in nature and, thus, requires an efficient privacy-preserving data publishing (PPDP) algorithm with high data utility. This paper describes the investigation of the publication of non-interactive sanitized trajectory data under a Differential Privacy (DP) definition. To this end, a new prefix tree structure, an incremental privacy budget allocation model, and a spatial-temporal dimensionality reduction model are proposed to enhance the sanitized data utility as well as to improve runtime efficiency. The developed algorithm is implemented and applied to real-life metro smart card data from Shenzhen, China, which includes a total of 2.8 million individual travelers and over 220 million records. Numerical analysis finds that, compared with previous work, the proposed model outputs sanitized dataset with higher utilities, and the algorithm is more efficient and scalable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.