Abstract

This paper is concerned with the computation of perfect stationary point, which is a strict refinement of stationary point. A differentiable homotopy method is developed for finding perfect stationary points of continuous functions on convex polytopes. We constitute an artificial problem by introducing a continuously differentiable function of an extra variable. With the optimality conditions of this problem and a fixed point argument, a differentiable homotopy mapping is constructed. As the extra variable becomes close to zero, the homotopy path naturally provides a sequence of closely approximate stationary points on perturbed polytopes, and converges to a perfect stationary point on the original polytope. Numerical experiments are implemented to further illustrate the effectiveness of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.