Abstract
The notion of perfect equilibrium was formulated by Selten (Int J Game Theory 4(1):25–55, 1975) as a strict refinement of Nash equilibrium. For an extensive-form game with perfect recall, every perfect equilibrium of its agent normal-form game yields a perfect equilibrium of the extensive-form game. This paper aims to develop a differentiable homotopy method for computing perfect equilibria of normal-form games. To accomplish this objective, we constitute an artificial game by introducing a continuously differentiable function of an extra variable. The artificial game defines a differentiable homotopy mapping and establishes the existence of a smooth path to a perfect equilibrium. For numerical comparison, we also describe a simplicial homotopy method. Numerical results show that the differentiable homotopy method is numerically stable and efficient and significantly outperforms the simplicial homotopy method especially when the problem is large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.