Abstract

High-resolution (HR) retinal optical coherence tomography (OCT) images are preferred by the ophthalmologists to diagnose retinal diseases. These images can be obtained by dense scanning of the target retinal region during acquisition. However, a dense scanning increases the image acquisition time and introduces motion artefacts, which corrupt diagnostic information. Therefore, researchers have a growing interest in developing image processing techniques to recover HR images from low-resolution (LR) OCT images. In this paper, we present an automated super-resolution (SR) scheme using diagnostic information weighted sparse representation framework to reconstruct HR images from LR OCT images. The proposed method performs fast and reliable reconstruction of the LR images. We also propose a 2D- variational mode decomposition (VMD) based OCT diagnostic distortion measure (QOCT) to quantify diagnostic distortion in the reconstructed OCT images. The SR method is evaluated on clinical grade OCT images with the proposed diagnostic distortion measure along with the conventional non-diagnostic measures like the contrast to noise ratio (CNR), the equivalent number of looks (ENL) and the peak signal to noise ratio (PSNR). The results show an average CNR of 4.07, ENL of 58.96 and PSNR of 27.72dB. An average score of 1.53 is obtained using the proposed diagnostic distortion measure. Experimental results quantify that the proposed QOCT metric can effectively capture diagnostic distortion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.