Abstract

We introduce a pure–stress formulation of the elasticity eigenvalue problem with mixed boundary conditions. We propose an H(div)-based discontinuous Galerkin method that imposes strongly the symmetry of the stress for the discretization of the eigenproblem. Under appropriate assumptions on the mesh and the degree of polynomial approximation, we prove the spectral correctness of the discrete scheme and derive optimal rates of convergence for eigenvalues and eigenfunctions. Finally, we provide numerical examples in two and three dimensions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.