Abstract
A density functional theory study is carried out to investigate the geometries and electronic structure of pristine and carbon-doped (8, 0) single-walled boron nitride nanotubes (BNNTs). In order to understand the effect of impurities or doping on (8, 0) single-walled BNNT, we simulated C-doping in six different ways. Geometry optimizations reveal that in the considered models, B–N bond lengths are not significantly influenced by C-doping. Based on the quantum theory of atoms in molecules analysis, charge density accumulation for axial B–N bond critical points (BCPs) of pristine BNNT is slightly larger than zigzag ones. However, due to C-doping at the B- or N-tips, the evaluated electron density tends to decrease slightly at both axial and zigzag B–N BCPs. Besides, results indicate that influence of C-doping on properties of the (8, 0) BNNT could be also detected by values of chemical shielding isotropy (σ iso) and anisotropy (Δσ).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have