Abstract
Oxime chemistry has been proven to be a reliable bioconjugation method for biomedical applications. Because of its stable and bio-orthogonal nature, a number of materials have been devised for in vitro and in vivo applications such as drug delivery, imaging, and biochemical assays. Polymers, synthetic molecules, nanoparticles, and biomolecules carrying alkoxyamine and aldehyde/ketone functional groups could be linked to each other through oxime bond, and a variety of modular platforms could be produced. Formation of oximes is catalyzed in acidic medium, and the proposed reaction mechanism follows classical imine formation pathways. Aniline has been found to accelerate the rate of oxime formation several orders of magnitude. In this computational study, we analyzed the proposed mechanism on model systems using DFT calculations including a solvation model. The energetics of the reaction steps in neutral and acidic conditions as well as in the presence of aniline was performed. Explicit water molecules were included in the calculations to study the energetics of solvent assisted proton transfer steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.