Abstract

Current automated heart monitoring tools use supervised learning methods to recognize heart disorders based on ECG signal morphology. We develop a new ECG processing algorithm that enables early prediction of disorders through a novel deviation analysis. The idea is developing a patient-specific ECG baseline and characterizing the deviation of signal morphology towards any of the abnormality classes with specific morphological features. To enable this feature, a novel controlled non-linear transformation is designed to achieve maximal symme- try in the feature space. Our results using benchmark MIT-BIH database show that the proposed method achieves a classification accuracy of 96% and can be used to trigger yellow alarms to warn patients from increased risk of upcoming heart abnormalities (5% to 10% increase with respect to normal conditions). This feature can be used in health monitoring devices to advise patients to take preventive and precaution actions before critical situations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.