Abstract

This research is to design a low power set-associative cache for embedded processors without additional delay or performance degradation. For this goal, deterministic way selection logic with power-aware replacement policy is designed to enable only one way of set-associative cache as in the direct-mapped cache. Delay analysis shows that the cache access time is almost the same as that of conventional set associative cache with additional way selection logic. Proposed architecture exploits the trade-offs between power and performance to achieve power reduction with the least performance loss. As the result of those approaches, simulation shows that the proposed architecture can reduce unit accessing power consumption by 59% over conventional set-associative caches with average 0.06% of negligible performance loss.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call