Abstract
Abstract Accurate characterization of precipitation P at subdaily temporal resolution is important for a wide range of hydrological applications, yet large-scale gridded observational datasets primarily contain daily total P. Unfortunately, a widely used deterministic approach that disaggregates P uniformly over the day grossly mischaracterizes the diurnal cycle of P, leading to potential biases in simulated runoff Q. Here we present Precipitation Isosceles Triangle (PITRI), a two-parameter deterministic approach in which the hourly hyetograph is modeled with an isosceles triangle with prescribed duration and time of peak intensity. Monthly duration and peak time were derived from meteorological observations at U.S. Climate Reference Network (USCRN) stations and extended across the United States, Mexico, and southern Canada at 6-km resolution via linear regression against historical climate statistics. Across the USCRN network (years 2000–13), simulations using the Variable Infiltration Capacity (VIC) model, driven by P disaggregated via PITRI, yielded nearly unbiased estimates of annual Q relative to simulations driven by observed P. In contrast, simulations using the uniform method had a Q bias of −11%, through overestimating canopy evaporation and underestimating throughfall. One limitation of the PITRI approach is a potential bias in snow accumulation when a high proportion of P falls on days with a mix of temperatures above and below freezing, for which the partitioning of P into rain and snow is sensitive to event timing within the diurnal cycle. Nevertheless, the good overall performance of PITRI suggests that a deterministic approach may be sufficiently accurate for large-scale hydrologic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.