Abstract
AbstractChanges in the frequency of temperature extremes are often attributed to global warming. The recent availability of near‐surface temperature data records from reference networks, such as the U.S. Climate Reference Network (USCRN), enables the quantification of measurement uncertainties. Within an activity of the Copernicus Climate Change Service, the estimation of the measurement uncertainty has been provided for USCRN temperature data, using metadata made available by the National Oceanic and Atmospheric Administration (NOAA). In this paper, four climate extreme indices (Frost Days, Summer Days, Ice Days, Tropical Nights) and the related uncertainties are calculated for the period 2006–2020 from the USCRN data set and compared with traditional indices. Moreover, the asymmetric USCRN measurement uncertainties are propagated to estimate the uncertainties of climate indices. The comparison shows expanded uncertainties homogeneously distributed with the latitude and typically within 15 days per year for Frost Days and within 10 days for Ice Days, while smaller uncertainties are estimated for Summer Days and Tropical Nights, with values typically within six to seven days per year. Positive uncertainties are typically larger than negative ones for all the indices. The values of Frost and Ice Days with the related uncertainties for USCRN have also been compared with the corresponding values calculated from reanalyses data, showing differences typically within 60 days for median values, quite often smaller than USCRN and inconsistent within the related uncertainties, Overall, the results show that USCRN measurement uncertainties increase confidence in the estimation of climate extreme indices and decisions for adaptation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.