Abstract

Fourier domain mode locked (FDML) laser are fast swept light sources. Measuring the linewidth and coherence length of such light sources is not straightforward, but very important for a physical understanding of FDML lasers and their performance in optical coherence tomography (OCT). In order to characterize the dynamic (“instantaneous”) linewidth, we performed beat signal measurements between a stationary narrowband continuous wave laser and an FDML laser and detected the signals with a 63 GHz real time oscilloscope. The evaluation of the beat signals of consecutive FDML wavelength sweeps yields information about the phase evolution within one sweep and over several sweeps. These measurements suggest the existence of a distinct comb like mode structure of the FDML laser and help to determine the locking strength of individual modes (comb lines).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.