Abstract

The characteristics of devices with gate oxide short defects are investigated for both n-MOS and p-MOS transistors. Experimental results obtained from real and design induced gate oxide shorts are presented analyzing the defect-induced conduction mechanisms that determine the transistor behavior. It is shown that three variables (defect location, transistor type and gate polysilicon doping type) influence the characteristics of a defective device. Of interest is the prediction and observation of a particular gate oxide short type that can cause latchup. An electrical model is proposed and compared with experimental data. Such a model is developed to be used in electrical CAD environments without introducing a penalty in the simulation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.