Abstract

AbstractThe development of organic lithium batteries (OLBs) offers a promising opportunity for the advancement of green and sustainable energy storage systems. However, organic cathode materials face challenges in terms of conductivity, electrochemical activity, and dissolution. Here, we address these limitations by introducing a sulfur‐linked carbonyl compound called poly(dichlorobenzoquinone sulfide) (PDBS), which is polymerized in situ on reduced graphene oxide by a mixed solvent thermal method. The resulting carbonyl compound electrode materials exhibit favorable properties as organic cathode materials for OLBs. After 4000 cycles at a current density of 1000 mA g−1, the carbonyl compound electrodes exhibit a discharge capacity of 102 mAh g−1. This remarkable performance indicates excellent stability and long cycle life, which are crucial for practical applications. These results suggest that PDBS, a designable sulfur‐linked carbonyl compound, holds great promise as an effective organic cathode material for OLBs. In addition, this work provides valuable insights into improving the electrochemical performance of organic cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.