Abstract

AbstractSince the beginning of the new century, the objectives of deep space exploration missions targeting celestial bodies such as the Moon and Mars shift from “understanding celestial bodies” to “utilizing celestial bodies.” With respect to the successful operation of various load missions, secondary battery systems play a crucial role in supplying energy. However, unlike terrestrial environment, extremely harsh extraterrestrial conditions, including extreme temperatures and radiation, severely limit the application of batteries in deep spaces. This work covers recent advancements in batteries, including electrolyte/electrode optimization strategies and thermal management under extreme low‐ and high‐temperature conditions and the mechanism analysis of key battery components under radiation environments. Finally, perspectives are given on the remaining challenges posed by battery applications in extreme deep space environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.