Abstract
Recently, atomic magnetometers have been reported as the most sensitive magnetometers by completely eliminating the spin exchange relaxation. In this paper, we described a design of highly sensitive cesium atomic magnetometer based on circular dichroism, which had the advantage of easily locking the probing laser to the necessary frequency compared with those based on circular birefringence. In order to polarize the cesium atoms uniformly, the pumping laser light was separated into two counter-propagating and counter-circular polarization beams through the atomic vapor cell. We employed a circular analyzer optical configuration to measure the ellipticity of the probing light, which indicated the amplitude of the magnetic field. The external magnetic field was tracked by a digital auto frequency tracking system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have