Abstract

This article describes a dual-controller dual-delay line delay lock loop (DC-DL DLL). The proposed DLL adopted a dual delay line structure, each delay line was composed of a coarse adjustment and a fine adjustment unit, and the dual delay lines had corresponding control units to reduce the mismatch between the delay lines, and it avoided the complicated design of duty cycle correction (DCC) circuit. A frequency divider was added to divide the input clock to achieve a wider input clock duty cycle adjustment. Additionally, a simple clock synthesis circuit was proposed to synthesize the required clock. The DLL design used the 25 nm process with a voltage of 1.2 V. The simulation results showed that at a working frequency of 1.6 GHz, the peak-to-peak jitter of the DC-DL DLL after locking was approximately 17.61 ps, the maximum output duty cycle error was about 1.3%, and the input duty cycle ranged from 20% to 80%, with a power consumption of 10.06 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.