Abstract

A procedure to establish the optimal performance parameters for the minimum entropy generation during the collection of solar energy, is presented. The Entropy Generation Number, Ns, and the criterion for the optimal thermodynamic operation of a collector under nonisothermally, finite-time conditions, are reviewed. The Mass Flow Number, M, corresponding to the optimum flow of working fluid as a function of the solar collection area, is also considered. A general method for the preliminary solar collector design, based on Ns, M and the “Sun–Air” or stagnation temperature, is developed. This last concept is defined as the maximum temperature that the collector reaches at nonflow conditions for given geographic location, geometry and construction materials. The thermodynamic optimization procedure was used to determine the optimal performance parameters of an experimental solar collector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.