Abstract
We established a design method for a Magic-T with a single-layer dielectric/metal structure suitable for both wideband and multi-element applications for millimeter and submillimeter wave imaging observations. The design method was applied to a Magic-T with a coupled-line, stubs, and single-stage impedance transformers in a frequency-scaled model (6–14 GHz) that is relatively easy to demonstrate through manufacturing and evaluation. The major problem is that using the conventional perfect matching condition for a coupled-line alone produces an impractically large width coplanar coupled-line (CPCL) to satisfy the desired bandwidth ratio. In our study, by removing this constraint and optimizing impedances utilizing a circuit simulator with high computation speed, we found a solution with a ∼\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sim$$\\end{document} 180 μm wide CPCL, which is approximately an order of magnitude smaller than the conventional analytical solution. Furthermore, considering the effect of transition discontinuities in the transmission lines, we optimized the line length and obtained a design solution with return loss < − 20 dB, amplitude imbalance < 0.1 dB, and phase imbalance < 0.5∘\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^{\\circ }$$\\end{document} from 6.1 to 14.1 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.