Abstract
Recent research has highlighted the significant performance of multi-step inertial extrapolation in a wide range of algorithmic applications. This paper introduces a derivative-free projection method (DFPM) with a double-inertial extrapolation step for solving large-scale systems of nonlinear equations. The proposed method's global convergence is established under the assumption that the underlying mapping is Lipschitz continuous and satisfies a certain generalized monotonicity assumption (e.g., it can be pseudo-monotone). This is the first convergence result for a DFPM with double inertial step to solve nonlinear equations. Numerical experiments are conducted using well-known test problems to show the proposed method's effectiveness and robustness compared to two existing methods in the literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have