Abstract

In this paper, we propose a new concept of derivative with respect to an arbitrary kernel function. Several properties related to this new operator, like inversion rules and integration by parts, are studied. In particular, we introduce the notion of conjugate kernels, which will be useful to guaranty that the proposed derivative operator admits a right inverse. The proposed concept includes as special cases Riemann‐Liouville fractional derivatives, Hadamard fractional derivatives, and many other fractional operators. Moreover, using our concept, new fractional operators involving certain special functions are introduced, and some of their properties are studied. Finally, an existence result for a boundary value problem involving the introduced derivative operator is proved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.