Abstract

Much research has been done on reactions of a single CO2 molecule with a graphene surface. In this paper, density functional theory calculations are used to investigate the adsorption and reaction of double CO2 on the surface of single vacancy (SV) and divacancy (DV) defect graphene. The study found that due to the mutual repulsion between CO2 and the size of the SV defect, it is difficult for two CO2 molecular to be adsorbed directly above the SV defect at the same time. Regardless of SV or DV, the adsorption of the first CO2 in the defect center will have a beneficial effect on the adsorption of the second CO2. In addition, the transition state calculation of the CO2 reaction on the DV plane was carried out, and the adsorption behavior was analyzed and studied. This in-depth study is helpful to the understanding of the reaction behavior of CO2 on graphene, and further exploration in the direction of the effective application of graphene to the reaction and adsorption of CO2. Our work explores the adsorption behavior of CO2 on graphene surfaces, the physical and chemical adsorption of double CO2 at the defect was studied and analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.