Abstract

AbstractAtom transfer radical polymerization (ATRP) and single electron‐transfer living radical polymerization (SET‐LRP) both utilize copper complexes of various oxidation states with N‐ligands to perform their respective activation and deactivation steps. Herein, we utilize DFT (B3YLP) methods to determine the preferred ligand‐binding geometries for Cu/N‐ligand complexes related to ATRP and SET‐LRP. We find that those ligands capable of achieving tetrahedral complexes with CuI and trigonal bipyramidal with axial halide complexes with [CuIIX]+ have higher energies of stabilization. We were able to correlate calculated preferential stabilization of [CuIIX]+ with those ligands that perform best in SET‐LRP. A crude calculation of energy of disproportionation revealed that the same preferential binding of [CuIIX]+ results in increased propensity for disproportionation. Finally, by examining the relative energies of the basic steps of ATRP and SET‐LRP, we were able to rationalize the transition from the ATRP mechanism to the SET‐LRP mechanism as we transition from typical nonpolar ATRP solvents to polar SET‐LRP solvents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4950–4964, 2007

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call